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Comment on ‘‘Extremal-point densities of interface fluctuations in a quenched random medium’’
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Lam and Tan@Phys. Rev. E62, 6246 ~2000!# recently studied the extremal-point densities of interface
fluctuations in a quenched random medium. In this Comment we show that their results for systems on a lattice
contain algebraic errors leading to invalid conclusions. Further, while most of their calculations for the con-
tinuum case are correct, they misinterpret the result to come to an agreement with the~erroneous! lattice
calculations. We derive the correct expressions for the lattice, which agree with the correct interpretation of the
continuum case.
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The authors of the recent paper, Ref.@1# address a valid
question pertaining to the small wavelength physics of a
11)-dimensional evolving interface in aquenched random
medium. The authors treat the problem by using a met
developed in two earlier papers@2,3#, which originally ad-
dressed the problem of extremal-point densities for fluctu
ing interfaces coupled to a time-dependent noise source.
difference between the two problems is that the noise in
quenched random medium has only spatial component, w
in the case studied in Refs.@2,3# it also has a temporal de
pendence. The noise in both cases is assumed to be
correlated, Gaussian distributed for each component. I
thus natural that the quenched random problem be treate
the same footing as the time-dependent case, by simply d
ping the temporal delta function from the covariance of
noise, and adapting our formulas from Refs.@2,3# accord-
ingly @4#. Unfortunately, in this process the authors@1# have
made numerous algebraic errors leading to erroneous con
sions. Due to the validity of their original idea, we feel com
pelled to correct those errors and present the true behavi
their models.

In Sec. II. of@1# the authors attempt to compute the av
age density of local minimâu& of a fluctuating interface in
the steady state supported on a one-dimensional lattice.
underlying stochastic process is described by the lin
model of molecular beam epitaxy,

] thi~ t !5n¹2hi~ t !2k¹4hi~ t !1h i , ~1!

where ¹2 is the discrete Laplacian andh i is a quenched
noise term, delta correlated in space~see@1# for the precise
definition of the terms and notations!. They derive the struc-
ture factor correctly@Eqs.~7! and~14! in @1##, however, they
make mistakes in applying the Poisson summation form
to compute the slope-slope correlation function. The ste
state structure factor for theslopesfor this problem is@1#

Sf~k!5
4D

@12cos~k!#$2n14k@12cos~k!#%2
. ~2!

Thus, the slope-slope correlation function will be given b
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CL
f~ l !5

1

L (
n51

L21

ei (2pn/L) lSfS 2pn

L D
5

4D

L (
n51

L21

3
ei (2pn/L) l

@12cos~2pn/L !#$2n14k@12cos~2pn/L !#%2
.

~3!

It is rather transparent that their result@Eqs. ~20!–~24! in
Ref. @1## for evaluating the above sum cannot be correct:
the generalnÞ0 case, the@12cos(k)# factor in the denomi-
nator of the structure factor~2! causes the correlation func
tion CL

f( l ) to divergeasL in the thermodynamic limit. Their
expressions@Eqs. ~20!–~24!# show that forL→`, CL

f( l )
converges to afinite correlation function instead. Conse
quently, their results for the correlation function ratio@Eq.
~25!# and the density of local minima@Eq. ~26!# is also erro-
neous.

While showing that Eqs.~20!–~26! in Ref. @1# cannot be
correct is simple, it involves a rather substantial effort
obtain the correct expressions for the above quantities
order to do so, one can employ the appropriate Poisson s
mation formula @namely, one for functions with compac
support on the real numbers, Eq.~B4! of Refs. @2# or @3##.
Then we obtain

CL
f~ l !5

D

n2 FL

6
2A0~ l !2A1~ l !

1

L
2A2~ l !

LbL

~12bL!2

2A3~ l !
bL

~12bL!
G , ~4!

where

A0~ l !5S 11
abu l u

11aD u l u1
a~21a!bu l u

A12a2~11a!
, ~5!
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A1~ l !5
1

6
2 l 22

a~212a1a2!

~11a!~12a2!
, ~6!

A2~ l !5
a~21a!~bl1b2 l !

A12a2~11a!
1

al~bl2b2 l !

11a
, ~7!

A3~ l !5
a~bl1b2 l !

11a
, ~8!

with a52k/(n12k) and b5(12A12a2)/a. This result
explicitly shows, that the leading term is proportional toL,
caused by the divergence for small wave vectors in the st
ture factor~2!. In addition, there is a constant (L indepen-
dent! term, a uniform power-law correction, and two exp
nential corrections. Since the density of local minima on
lattice is given by@2,3#

^u&L5
1

2p
arccosS CL

f~1!

CL
f~0!

D , ~9!

one obtains~after neglecting the exponential corrections f
largeL)

^u&L5
1

2p
arccosS 12

6A12a

~11a!2

1

L
16F11

6

~11a!3

2
6

~11a!G 1

L2
1••• D . ~10!

Thus, fora,1 ~which is ensured as long asn.0),

^u&L.
A3

p

~12a!1/4

~11a!3/4

1

AL
, ~11!

or expressinga in terms ofn andk,

^u&L.
A3

p

~112k/n!1/2

~114k/n!3/4

1

AL
~12!

in the L→` asymptotic limit. These results show that
long asn.0, the density of local minima approacheszeroas
1/AL, and not a finite nonzero value as claimed in Ref.@1#.
In particular, for the pure Edwards-Wilkinson~EW! ~or dif-
fusion! dominated regime~described by thek→0 limit! we
obtain

^u&L.
A3

p

1

AL
→0, ~13!

which contrasts with the erroneous conclusion,^u&L→1/4, of
Ref. @1#.

In the Mullins term dominated regime~described by the
limit n→0), we have to take into account also theL22 term
in Eq. ~10! since in this casea→1. Then we obtain
04810
c-

a

^u&L.
A15

2p

1

L
. ~14!

One can see that for the Mullins regime, the effects of
relaxation are stronger~the density of local minima vanishe
faster with system size! than for the diffusion dominated EW
regime, as is typical when curvature driven terms are pres

In order to check their results, the authors of Ref.@1#
attempt to calculate directly the slope-slope correlation fu
tion for thek50 ~pure Edwards-Wilkinson! case, Eqs.~27!
and~28!. Unfortunately, their Eq.~28! does not follow from
their Eq.~27!. The sum in Eq.~27! is a common expression
in statistical field theory on finite lattices. The same summ
tion ~with a different prefactor! was calculated and given in
Refs.@2# and@3# @see Eq.~31! in these references#. The cor-
rect result can also be obtained by settingk50 in Eqs.~4!–
~8! above, yielding

CL
f~ l !5

D

n2 FL

6 S 12
1

L2D 2u l uS 12
u l u
L D G . ~15!

The correct expression for̂u&L is given by Eq.~13!, and
again it is clear that it approaches zero as 1/AL in the
asymptotic large-L limit, and not a nonzero constant (1/4
as indicated by Eq.~29! in Ref. @1#.

After obtaining all the correct results, a more general co
sequence for linear growth models with a dynamic expon
z with quenched noise proposed by@1# is clear: thesteady-
statebehavior in the presence of a quenched noise and w
a dynamic exponentz will be identical to the behavior of the
usual time-dependent noise case with a dynamic expo
2z. This observation should not come as a surprise: it
rectly follows form Eq.~7! and ~9! of Ref. @1#, where the
steady-state height structure factor for the quenched med
case is simply proportional to the square of the same quan
for the usual time-dependent noise case. This trivial co
spondence will also be explicit in the continuum case
follows below.

In Sec. III of Ref. @1# the authors compute the averag
density of minima^u& for a one-dimensional interface de
scribed by thecontinuumLangevin equation

] th~x,t !52n~¹2!z/2h~x,t !1h~x!, ~16!

with h being the delta-correlated, time-independent Gauss
noise~see Ref.@1# for the exact definition of the terms an
notations!. In thesteady-stateregime theonly difference be-
tween their formulas and ours~apart form an overall 1/n
multiplying factor! is that z in our equations has to be re
placed by 2z to obtain theirs@compare Eq.~47! of Ref. @1#
with Eq. ~121! of Refs. @2# and @3##. This trivial change (z
→2z) could lead to the right conclusions immediately f
the steady-state behavior. Unfortunately, even in this c
one of their major conclusions is incorrect. Forz52, below
the formula under Eq.~56! in Ref. @1# they argue using
Ū(L,`)5@1/A2z(2)#(1/ALa) ~which is a correct expres
sion! that this is a constant forLa5const~in agreement with
their erroneous discrete lattice calculations!. This is a misin-
1-2
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terpretation of their otherwise algebraically correct res
Note, that in these expressions,L is the physical size of the
system, i.e.,~the number of lattice sites!3a. The lattice con-
stanta serves as a microscopic cutoff to control the calcu
tions on the continuum. In order to extractlattice effects
from the continuum approach and to compare it to dir
lattice calculations, one has tofix the lattice constanta ~e.g.,
a51 for convenience, in which caseL becomes the size o
the corresponding lattice!. Then one immediately sees th
the density of local minima goes to zero as 1/AL in the large
system-size limit in full agreement with the correct latti
results, Eq.~13! above. Their agreement between their d
crete and the continuum calculations is a result of using
incorrect interpretation of the latter to match the errone
algebra of the former.

In Sec. III B ~‘‘Scaling regime’’! of Ref. @1# the authors
calculate the temporal behavior of the local minimum de
sity and the related partition functions, based on the form
ism developed in Refs.@2,3#. While most of the expression
obtained by the authors in Ref.@1# are correct in principle,
there are numerous typographical errors in this section.
to the scope of this paper we limit ourselves to list only a f
of those, which we believe are serious enough to hinder c
ity and understanding for the general reader.

The correct argument of the gamma function in Eq.~61!
of Ref. @1# should read (m22z11)/z, as shown correctly in
Eq. ~62!. These expressions are valid forboth z,(m11)/2
andz.(m11)/2 regimes, not onlyz,(m11)/2, as the au-
thors mention. Under Eq.~64! of Ref. @1# the authors men-
tion thatC is ‘‘a’’ constant. We note thatC5C2 ln 2 where
C is the Euler constant. In Ref.@1# Eq. ~67! is missing a@1
2Em# factor and there should be a minus sign in front of t
exponent of 2; in Eq.~68! the factor (12E4) should be in
the numerator and there should be a factor 4~as opposed to
2) in front of G(3/2) in the denominator; Eq.~69! should not
have a factor 2 in the numerator.

Some of the conclusions they draw from Eqs.~68–70! for
the z.5/2 also contain errors. Correctly they should rea
Uq(L,t);t2[22q(2z25)]/(2z), Ū(L,t);t21/z ~the latter they
obtained correctly!, andK(L,t);t (2z25)/(2z). The statement
in the second sentence after Eq.~70! ‘‘ . . . with z54, the
density of local minima decreases in time ast21/2. . . ’’ is
incorrect, sinceŪ(L,t);t21/z5t21/4.
y
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For the casez55/2 we would like to point out that the
otherwise correct results, Eqs.~71!–~74! of Ref. @1#, contain
no logarithmic ‘‘corrections’’ as referred to by the autho
after Eq. ~74!. Logarithmic scaling is theleading behavior
itself and not a correction:Uq(L,t);t22/5(ln t)(q11)/2,

Ū(L,t);t22/5Alnt, andK(L,t);Aln t.
For the regime 3/2,z,5/2 and also the rest of the cas

the authors do not attempt to show the explicit scaling
havior. The temporal scaling behavior for the three quanti

they compute are:Uq(L,t);t2(2z23)/(2z), and thusŪ(L,t)

;t2(2z23)/(2z), and K̄(L,t) becomes a constant in leadin
order ~for fixed a) with a next-term temporal correction o
t2(522z)/z. In particular for the pure Edwards-Wilkinson cas
(z52) the density of local minima vanishes ast21/4. For this
z52 case they again attempt to extract lattice effects fr
the continuum approach to compare them to the direct lat
calculations. In order to do so, they use thej→`, a→0
(ja5const) limit. This limit has nothing to do with extract
ing lattice results~for which one simply has to keepa fixed!.
The only reason why their ill-defined limit is in agreeme
with their lattice result, because their lattice calculation w
erroneous to begin with.

For thez53/2 case the temporal scaling behavior~leading

order! is as follows: Uq(L,t);(ln t)21/2, and Ū(L,t)
;(ln t)21/2.

In the regime 1,z,3/2 the quantities are led by time
independent terms~constants! followed by time-dependen

corrections: for bothUq(L,t) and Ū(L,t) the correction
terms have a temporal dependence oft2(322z)/(2z).

In summary, the authors in Ref.@1# address a valid ques
tion, using the formalism and language~at points taken liter-
ally! developed in Refs.@2,3#. However, their lattice calcu-
lations are not sound algebraically and the results
incorrect. Then after carrying out a continuum-based
proach and using an incorrect limit to interpret their oth
wise correct formulas, they ‘‘manage’’ to find agreement b
tween the two approaches.

Z.T. was supported by the Department of Energy, un
Contract No. W-7405-ENG-36.
s

d

@1# P.-M. Lam and S. Tan, Phys. Rev. E62, 6246~2000!.
@2# Z. Toroczkai, G. Korniss, S. Das Sarma, and R.K.P. Zia, Ph

Rev. E62, 276 ~2000!.
@3# Z. Toroczkai, G. Korniss, S. Das Sarma, and R.K.P. Zia, htt

xxx.lanl.gov/abs/cond-mat/0002143.
s.

//

@4# For the continuum case Rice@5# obtained analytic expression
for the extremal-point densities~in the context of noise effects
on telephone transmission! without using the path integral an
‘‘partition function’’ formalism.

@5# S.O. Rice, Bell Syst. Tech. J.23, 282 ~1944!.
1-3


