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Comment on “Extremal-point densities of interface fluctuations in a quenched random medium”
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Lam and Tan[Phys. Rev. E62, 6246 (2000] recently studied the extremal-point densities of interface
fluctuations in a quenched random medium. In this Comment we show that their results for systems on a lattice
contain algebraic errors leading to invalid conclusions. Further, while most of their calculations for the con-
tinuum case are correct, they misinterpret the result to come to an agreement witrrtreous lattice
calculations. We derive the correct expressions for the lattice, which agree with the correct interpretation of the
continuum case.
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The authors of the recent paper, Rf] address a valid L-1
question pertaining to the small wavelength physics of a (1C¢(I)— > '(2””’”'8‘1’(
+1)-dimensional evolving interface in guenched random -
medium. The authors treat the problem by using a method D “-
developed in two earlier papef&,3], which originally ad- - 2
dressed the problem of extremal-point densities for fluctuat- L n=1
ing interfaces coupled to a time-dependent noise source. The
difference between the two problems is that the noise in the
qguenched random medium has only spatial component, while [1—cog2mn/L)]{2v+ 4K[1—cos(277n/L)]}2'
in the case studied in Reff2,3] it also has a temporal de-
pendence. The noise in both cases is assumed to be delta )
correlated, Gaussian distributed for each component. It is
thus natural that the quenched random problem be treated dnis rather transparent that their resfiEqs. (20)—(24) in
the same footing as the time-dependent case, by simply drojref.[1]] for evaluating the above sum cannot be correct: for
ping the temporal delta function from the covariance of thethe generab+# 0 case, thé 1— cosk)] factor in the denomi-
noise, and adapting our formulas from R€fg,3] accord- nator of the structure factd®) causes the correlation func-
ingly [4]. Unfortunately, in this process the auth¢ig have  tion C{(l) to divergeasL in the thermodynamic limit. Their
made numerous algebraic errors leading to erroneous conclgxpressiong Egs. (20)—(24)] show that forL—o, C? {0
sions. Due to the validity of their original idea, we feel com- converges to dinite correlation function instead. Conse-
pelled to correct those errors and present the true behavior gfuently, their results for the correlation function rafisq.
their models. (25)] and the density of local minimigEq. (26)] is also erro-

In Sec. Il. of[1] the authors attempt to compute the aver-pegus.
age density of local miniméu) of a fluctuating interface in While showing that Eqs(20)—(26) in Ref.[1] cannot be
the steady state supported on a one-dimensional lattice. Th®rrect is simple, it involves a rather substantial effort to
underlying stochastic process is described by the lineagbtain the correct expressions for the above quantities. In

27Tn)

el (2miL)l

model of molecular beam epitaxy, order to do so, one can employ the appropriate Poisson sum-
mation formula[namely, one for functions with compact
ahi(t)=vV2h,(t)— kV*hi(t) + 7, (1)  support on the real numbers, E@®4) of Refs.[2] or [3]].

Then we obtain

where V2 is the discrete Laplacian ang, is a quenched

noise term, delta correlated in spacee[1] for the precise D|L 1 bt
definition of the terms and notationg hey derive the struc- cth=— 5 A=A —Ax(l) —=
ture factor correctlfEgs.(7) and(14) in [1]], however, they v (1-b5)
make mistakes in applying the Poisson summation formula bt
to compute the slope-slope correlation function. The steady —As() ) 4)
state structure factor for thelopesfor this problem ig[1] (1-b")
4D where
S?(k)= )
[1—cogk)[{2v+4x[1—cogk)]}?
Ayl (1+ ab! I+ a2+l 5
Thus, the slope-slope correlation function will be given by ol) 1+a i Ji-a%(1+a)’ )
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1 a(2+2a+a?) V151
2" - -7 ~_~_ 14

One can see that for the Mullins regime, the effects of the
a(2+a)b'+b") al(b'—b " Lans reg!

A(])= 7 relaxation are strongdthe density of local minima vanishes
2( ) > ’ ( ) . . . . .
Vl—a*(1l+a) 1+a faster with system sizéhan for the diffusion dominated EW
regime, as is typical when curvature driven terms are present.
a(b'+b™" In order to check their results, the authors of Rf]
As(l)= —1ra (8)  attempt to calculate directly the slope-slope correlation func-

tion for the k=0 (pure Edwards-Wilkinsoncase, Eqs(27)

. _ _ . d(28). Unfortunately, their Eq(28) does not follow from
with a=2«/(v+2«) and b=(1—y1—a?)/a. This result "¢ . : .
explicitly shows, that the leading term is proportionallto their Eq.(27). The sum in Eq(27) is a common expression

caused by the divergence for small wave vectors in the strud” statistical field theory on finite lattices. The same summa-

ture factor(2). In addition, there is a constant (indepen- ion (with a different prefactgrwas calculated and given in

dend term, a uniform power-law correction, and two expo- Refs.[2] and[3] [see Eq/(31) in these referencésThe cor-

nential corrections. Since the density of local minima on arect result can also be obtained by setting0 in Egs.(4)-

lattice is given by[2,3] (8) above, yielding

(15

s DJL 1 Il

The correct expression fgu), is given by Eq.(13), and
again it is clear that it approaches zero as/Ll/in the
asymptotic largd- limit, and not a nonzero constant (1/4),
as indicated by Eq29) in Ref.[1].

one obtaingafter neglecting the exponential corrections for
largelL)

(u)inarcco 1_6_Vl_a E +6/1 6 After obtaining all the correct results, a more general con-
2m (1+a)?L (1+a)® sequence for linear growth models with a dynamic exponent
z with quenched noise proposed fi] is clear: thesteady-
6 1 statebehavior in the presence of a quenched noise and with
(1+a)|L2 e 10 5 dynamic exponerzwill be identical to the behavior of the
usual time-dependent noise case with a dynamic exponent
Thus, fora<1 (which is ensured as long as>0), 2z. This observation should not come as a surprise: it di-
rectly follows form Eq.(7) and (9) of Ref. [1], where the
\/§ (1-a)¥ 1 steady-state height structure factor for the quenched medium
Wy =——"——, (11) case is simply proportional to the square of the same quantity
7 (1+a)¥* L for the usual time-dependent noise case. This trivial corre-
spondence will also be explicit in the continuum case as
or expressing in terms ofv and «, follows below.
In Sec. lll of Ref.[1] the authors compute the average
V3 (1+2k/v)¥2 1 density of minima(u) for a one-dimensional interface de-
(U= - mﬁ (12 scribed by thecontinuumLangevin equation
ah(x,t) = —v(V?)??n(x,t) + 7(x), (16)

in the L—o asymptotic limit. These results show that as
long asy>0, the density of local minima approachesoas
1/J/L, and not a finite nonzero value as claimed in R&f.

In particular, for the pure Edwards-Wilkins¢dgW) (or dif-
fusion) dominated regimédescribed by thec—0 limit) we
obtain

with # being the delta-correlated, time-independent Gaussian
noise(see Ref[1] for the exact definition of the terms and
notations. In the steady-stateegime theonly difference be-
tween their formulas and our@part form an overall ¥/
multiplying factop is thatz in our equations has to be re-
placed by Z to obtain theirdcompare Eq(47) of Ref.[1]
(u) = E i—>0 (13 with Eqg. (121) of Refs.[2] and[3]]. This trivial change %
Lo N —22z) could lead to the right conclusions immediately for
the steady-state behavior. Unfortunately, even in this case
which contrasts with the erroneous conclusian, —1/4, of ~ one of their major conclusions is incorrect. For 2, below
Ref. [1]. the formula under Eq(56) in Ref. [1] they argue using
In the Mullins term dominated regim@escribed by the U(L,)=[1/1/2¢(2)](1/yLa) (which is a correct expres-
limit »—0), we have to take into account also the term  sion) that this is a constant fdra= const(in agreement with
in Eq. (10) since in this case— 1. Then we obtain their erroneous discrete lattice calculatiprighis is a misin-
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terpretation of their otherwise algebraically correct result. For the casez=5/2 we would like to point out that the
Note, that in these expressiorsijs the physical size of the otherwise correct results, Eqg.1)—(74) of Ref.[1], contain
system, i.e.(the number of lattice sit¢x a. The lattice con-  no logarithmic “corrections” as referred to by the authors
stanta serves as a microscopic cutoff to control the calcula-after Eq.(74). Logarithmic scaling is théeading behavior
tions (;n the continuum. In c;]rderdto extraletitice effec(;s itself and not a correction:Uq(L,t)~t‘2/5(|nt)(q“)/2,
from the continuum approach and to compare it to direc __+—205 _
lattice calculations, one has fix the lattice constara (e.g., U(L’t) tyint, andK(L,t)~int
a=1 for convenience, in which cadebecomes the size of th th q t att t to show th licit lina be-
the corresponding latti¢ge Then one immediately sees that € authors do not attempt 1o Show the expicit scaling be
. B i havior. The temporal scaling behavior for the three quantities

the density of local minima goes to zero ag/ll/in the large (22-3)I(22) -
system-size limit in full agreement with the correct lattice they compute aretq(L,t)~t~(** » and thusU(L,t)
results, Eq.(13) above. Their agreement between their dis-~t~(22-3/(22 and K(L,t) becomes a constant in leading
crete and the continuum calculations is a result of using arder (for fixed a) with a next-term temporal correction of
incorrect interpretation of the latter to match the erroneous~(5-22/2 |n particular for the pure Edwards-Wilkinson case
algebra of the former. . (z=2) the density of local minima vanishestas’*. For this

In Sec. Il B (“Scaling regime”) of Ref. [1] the authors  7=2 case they again attempt to extract lattice effects from
calculate the temporal behavior of the local minimum den+the continuum approach to compare them to the direct lattice
sity and the related partition functions, based on the formalg culations. In order to do so, they use thes», a—0
ism developed in Ref$2,3]. While most of the expressions .5 _ ¢onst) limit. This limit has nothing to do with extract-

obtained by the authors in Re[fl] are correct in prlnqlple, ing lattice resultgfor which one simply has to keepfixed).
there are numerous typographical errors in this section. Du he only reason why their ill-defined limit is in agreement
to the scope of this paper we limit ourselves to list only a few . h their latti | heir [ati lculati
of those, which we believe are serious enough to hinder cIarWIt their lattice resu t because their lattice calculation was
ity and understanding for the general reader. erroneous to begin with. ) )
The correct argument of the gamma function in &) For thez= 3/2 case the temporal scaling beha\(igadmg
of Ref.[1] should read fi—2z+1)/z, as shown correctly in orded is as follows: Ug(L,t)~(Int)"¥% and U(L,t)
Eq. (62). These expressions are valid footh z<(m+1)/2  ~(Int)"*2
andz>(m+ 1)/2 regimes, not onlg<(m+1)/2, as the au- In the regime Xk z<3/2 the quantities are led by time-

thors mention. Under Eq64) of Ref.[1] the authors men- independent termgconstants followed by time-dependent
tion thatC is “a” constant. We note thaC=C—In2 where  corrections: for bothU(L,t) and U(L,t) the correction

C is the Euler constant. In Ref1] Eq. (67) is missing a1  terms have a temporal dependence df ~22/(22),

—E,,] factor anq there should be a minus sign in front qf the | summary, the authors in RdfL] address a valid ques-
exponent of 2; in Eq(68) the factor (1-E,) should be in  yjon ysing the formalism and language points taken liter-
the numerator and there should be a factdad opposed 10 5 geveloped in Refg2,3]. However, their lattice calcu-

2) in front of I'(3/2) in the denominator; E469) should not 4505 are not sound algebraically and the results are

have a factor 2 in the numerator. . ; .
\ incorrect. Then after carrying out a continuum-based ap-
Some of the conclusions they draw from E(&8-70 for d_proach and using an incorrect limit to interpret their other-

the z>5/2 also contain errors. Correctly they should read: . f | hey * " to find b
-2-az-52) (L0t (the latter th wise correct formulas, they “manage” to find agreement be-

Ug(L,t)~t , U(L, % P (the latter they  yyeen the two approaches.

obtained correctly andK(L,t)~t(?275/(22_ The statement

For the regime 3/2z<5/2 and also the rest of the cases

in the second sentence after E@0) “... with z=4, the
denSity of |Oca|_minima decreases in time IETSW. s Z.T. was supported by the Department of Energy, under
incorrect, sincdJ (L,t)~t~ Y¥2=t"4 Contract No. W-7405-ENG-36.
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